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Su~nmary. The current-voltage relations obtained by integrating the Nernst-Planck 
equations for a variety of energy profiles are obtained. A simple and approximate method 
for comparing these relations is described. The method is based on using a linearized transform 
of current-voltage relations for an Eyring single barrier model. A parameter, 7, related to 
the location of the single barrier in the Eyring model, and to the shape of the barrier in 
other models, is readily obtained from the slopes of the linearized relations. It is then a simple 
matter to determine whether a given current-voltage relation allows discrimination between 
any particular energy profiles. The results show that the equivalent Eyring model does not 
always place the peak energy barrier in the same position as other models and that quite 
large errors in the assignment of position may be made if such a model is used. The results 
are also used to test the ability of some experimental current-voltage diagrams to discriminate 
between various energy profiles. 

Recently, considerable interest has been shown in attempting to locate 
the positions of the rate-limiting energy barriers to ion movement across 
cell membranes and artificial membranes. Woodhull (1973) and Hille 
(1974; 1975) have used current-voltage diagrams and the voltage depen- 
dence of proton blockage to locate the major energy barrier to sodium 
movement through the TTX-sensitive sodium channels in nerve. They 
conclude that this barrier is located about 25~ of the distance across 
the membrane, being closer to the outside than to the inside surface. 

In the case of artificial membranes, various authors (e.g., Haydon & 
Hladky, 1972; Hall, Mead & Szabo, 1973; Hladky, 1974; Andersen & 
Fuchs, 1975) have investigated the dependence of the current-voltage 
relation on the shape of the energy profile across the membrane. 

One of the major difficulties in this kind of work lies in the fact that 
the information contained in a single current-voltage diagram is limited 
and is usually less than is required to unambiguously describe the shape 
and magnitude of the energy profile. Even very simple models (such as 
the single barrier model described in Noble, 1972) may generate a wide 
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variety of current-voltage diagrams so that it is likely that a variety of signif- 
icantly different energy profiles may give rise to current-voltage diagrams 
whose shapes are virtually indistinguishable experimentally. In this paper 
we shall investigate the extent to which this problem may give rise to 
difficulties in attempts to locate the position of peak energy barriers. We 
shall do this by comparing the current-voltage diagrams produced by 
integrating the Nernst-Planck equations for various energy profiles with 

those produced by a simple single barrier model. 
We shall show that quite large errors are possible in determining the 

location of peak barriers if no additional information on the energy profile 
is available and if the "wrong" profile is chosen for analysis. 

Theory 

Equations for Single Barrier Model 

The models we shall consider here share three features in common. 
First, the voltage profile across the membrane is assumed to be linear. 
Secondly, the energy profile in the presence of an electrical field is assumed 
to be formed at each point by the algebraic sum of the energy at zero 
electric field and the energy of the field itself. This assumption is equiv- 
alent to saying that the electrical field itself does not change the non- 
electrical energy barriers. Thus, no gating reactions are involved; we are 
concerned solely with the ion transfer reaction in the absence of electrical 
gating. Finally, we shall assume that the independence principle holds in 
all cases. The barriers to ion movement are not dependent on the ion 
movement itself. 

The reasons for making these assumptions are not that we consider 
them to be realist ic-  in the case of real excitable membranes they clearly 
are not realistic in most cases -  but rather because we wish to investigate 
whether there is a considerable degree of ambiguity in interpreting current- 
voltage diagrams, even when these simplifying assumptions are made. 
The ambiguity will only increase further if more complex models are 
investigated, except when these models result in current-voltage dia- 
grams that actually lie outside the range of diagrams given by simpler 
models. 

This range may readily be established by considering the simplest 
model: the single rate-limiting Eyring energy barrier. This barrier is 
assumed to lie at a distance from the surface of the membrane given by 
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a parameter 7 that may vary between 0 (rate-limiting barrier on surface 
on side 1) and 1 (rate-limiting barrier on a surface on side 2). ~ =0.5 thus 
corresponds to a barrier placed exactly in the centre of the membrane. 
The equation for the steady-state current-voltage diagram in this case is 
readily obtained from Eyring rate theory. When equal ion concentrations 
occur on each side of the membrane, i.e., C1 = C2, and only monovalent 
species are considered, we obtain (c f  Noble, 1972): 

I = A F C  e -  G/RT (e ~EFIR T _ e -  (1 - ~) EF/RT) (1) 

where I is the current, A is a constant, F is the Faraday, C is the concen- 
tration of ions, G is the magnitude of the peak energy barrier in the 
absence of an electrical field, R is the gas constant, T is absolute temper- 
ature, E is the transmembrane potential, and 7 is the "position" parameter 
discussed above. 

Fig. 1 (top) shows the current-voltage diagrams given by Eq. (1) for 
= 0.05, 0.5 and 0.95. When 7 = 0.05, the relation is concave downwards 

(towards the E axis) and becomes fiat at large potentials. When 7 = 0.95, 
the relation is concave upwards and the current simply increases indef- 
initely with potential. All the current-voltage diagrams investigated in 
the models described in this paper must lie between those for 7=0  and 
7=1 although their shapes might or might not be well described by 
Eq. (1). In order to compare the various models we shall determine which 
value of 7 in the single energy barrier model gives the closest fit to the 
current-voltage diagrams. This may be done by using a plot that linearizes 
all current-voltage diagrams given by Eq. (1) so that the slope of the line 
will give a measure of 7 and the degree of linearity will give a measure of 
the goodness of fit. 

The linearization may be achieved as follows: Eq. (1) may be rewritten. 

I = A F  C 2  6IR r e ~ ev/e r (1 - e -  EF/R T). (2) 

If we compare currents at two potentials, E and a reference potential, E o , 
we obtain 

Io  _ e~( to_  e) F l e r  [ I - e E~  r 

-7-- " t l  I (3) 

and we obtain 

2- 3 (1 - e -~'v/er) 
( E ~ 1 7 6 1 7 6  [ ~  (1 e - E ~  " (4) 
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Fig. 1. Top: Current voltage relations derived from the single rate limiting Eyring barrier 
positioned close to either surface (7=0.05, 0.95) or the middle (7=0.5) of the membrane. 

Bottom: Linearized plots of the top curves 

If we  n o r m a l i z e  I relat ive  to  Io then  

2 - 3  (1-e -~rmr ) 
(E o - E) - log1 o + c o n s t a n t .  (5) 7F/RT I/Io 
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- -2 .3  
The constant is - - l o g l o  (1--e~~ We shall usually take E0 to be 

yF/RT 
100 inV. This choice is arbitrary but immaterial. Any other choice of E0 
would do, although for accuracy in normalizing I it is better to choose a 

relatively large value of Eo. / 1 - e  -~F/Rr \ 
Thus, the single barrier model predicts that a plot of log 1 o _ [ i/io ) 

r 

against (Eo-E) should yield a straight line whose slope is given by 
?F/2.3RT. Fig. 1 (Bottom) shows the results of Fig. 1 (top) replotted in 
this manner. These kinds of plots are equivalent to the use of Tafel's 
equation in electrochemistry (see Kortiim, 1965, p. 467). Our 7 parameter 
is exactly analogous to the transition factor, e, in Tafel's equation. 

Equations for Other Energy Profiles 

(a) Trapezoid barrier. One of the energy profiles of interest in work 
on ion transport by hydrophobic carriers, such as valinomycin and 
monactin, is that attributable to the electrostatic energy required to 
carry a charged particle through a medium of low dielectric constant. 
This energy may be of the order of 3 0 -  50 kcal (see Neumcke & L~iuger, 
1969; Haydon & Hladky, 1972; Brown, 1974) and activation enthalpies 
of this order of magnitude have been measured experimentally (Ginsburg 
& Noble, 1974). In this case, the energy profile expected is one in which 
the peak energy is reached quite rapidly on entering the hydrophobic 
phase and then forms a plateau before falling steeply on the other side of 
the hydrophobic phase (cf Brown, 1974). A simple approximation to this 
case is given by considering a trapezoidal energy barrier (Haydon & 
Hladky, 1972; Hall, Mead & Szabo, 1973; Hladky, 1974). In this case 
we shall use the parameter 7r to represent the distance at which the edge 
of the plateau is situated (see Fig. 2 a). This model has the advantage that 
it may readily be adapted to cases in which the peak electrostatic energy 
is reached more slowly, as would happen, for example, if the regions of 
membrane near the surface are more polar than those at the centre. 
A larger value of 7r would then be obtained. 

One might expect that the best-fitting discrete barrier model in this 
case would be one in which single energy barriers are placed at the edges 
of the trapezoid plateau 1. This is the approximation made by Hall et al. 

i It should be noted that the use of two Eyring energy barriers to represent the trapezoid 
strictly invalidates the use of a single barrier equation. The latter should be asymmetric 
since if, for positive potentials, y=x then for negative potentials However, for a 
two barrier model the rate-limiting barrier will depend on the direction of the field and the 
same value of 7 applies. The degree to which this approximation is valid is tested below 
(see Fig. 3c). 
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Fig. 2. (a) Trapezoid Barrier; (b) Single Rectangle Barrier; and (c) Double Rectangle Barrier. 
The membrane thickness is denoted by d; 7 is a position parameter and H is a rectangle width 

parameter 

(1973) in considering this particular model ( s ee  their paper, p. 81, footnote). 
This approximation may be tested by comparing the ?T values for the 
trapezoid model with those obtained by the best fitting Eyring model. 

We have performed this comparison, first obtaining current-voltage 
relations for the trapezoid profile by integrating the Nernst-Planck 
equation in the steady state (Haydon & Hladky, 1972, Eq. 27): 

C2 e Ga/RT _ C 1 e c'I/RT 
I = - F D  a (6) 

e ~  d x  

0 
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where F is the Faraday, D is the diffusion constant of the charge carrier 
and G is the sum of the potential energy Go in the absence of a field and 
the energy of the field: 

G (x) = G O (x) + zFEx/d, (7) 

d is the thickness of the membrane, and x is the membrane thickness 
coordinate. GI and Gz are the total energies at the membrane surface 1 
and 2 (x =0  and x =d  respectively). 

For the trapezoid case, Eq. (6) may be rewritten: 

C 2 e G2/RT _ C 1 e G,/RT 
I = - FD x = ~-~ x = (1 - ~T)a x = ~ , (8) 

x fo eGmTdx+ x !rd e61ardx+ ~ e 61RTdx 
= = x = ( 1 - - ~ T ) d  

where G, =0, G 2 = - z E F = - E F  (for z = l )  and 

O(x)  =,  

- EF -~  O ~ X ~ Y T d  

EFx 
Go d 7Td<X<(1 -Tr )d  (9) 

U -  +EF 7 (1 -yr)d<_x<_d. 

The integrals in Eq. (8) have analytical solutions. We used a computer 
program to calculate the current voltage relations from Eq. (8) and (9) 
for trapezoids of different plateau thicknesses (by varying 7T) and heights 
(by varying Go) over the voltage range 0-200 inV. 

(b)  Rectangular barrier. A rectangular barrier extending over a large 
portion of the membrane (Fig. 2 b) may be used as another approximation 
to the electrostatic barrier encountered by a charged particle crossing a 
low dielectric membrane. 

Narrow rectangular barriers (Fig. 2b) have a second use; the current 
voltage relations of a very narrow rectangular barrier should be similar 
to those generated by the simple Eyring rate limiting barrier. In this case, 
it is of interest to determine how narrow a sharp rectangle must be in 
order to obtain from the integration of the Nernst Planck equation a 
current voltage relation virtually identical to the one obtained from the 
commonly employed Eyring barrier approximation. 
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In this case, the Nernst-Planck relation is 

C 2 e G z / R T -  C 1 e GURT 

I = - FDx= ~d x=(~R +u)d x =~ (10) 

x~=o ea/ar dx + x=!.a e~/er dx +~=(y~+maea/aZ dx 

where 7R is a parameter determining the position of the barrier in the 
membrane and H is the rectangle's thickness (see Fig. 2 b), and 

G , ,  [ G o - E F x / d  
ix) = ). _ EFx/d 

7Rd<=x<=(YR+H) d 
(11) 

O<=X<TRd; (x+H) d < x < d  

The I(V) relations were computed for various rectangular positions, 
heights and thicknesses. 

(c) Double rectangular barrier. If more than one rate limiting barrier 
is present in the membrane it is possible to calculate the current voltage 
relations by using standard rate theory. Eyring and Eyring (1965) have 
given a general solution to the problem. This approach has a serious 
limitation in that the concentrations of the permeating species are assumed 
to be equilibrated between each pair of barriers. 

The Nernst-Planck equations eliminate this assumption. We chose 
the simplest case, a double rectangular barrier and calculated the current 
voltage relations generated for various heights and thicknesses of sym- 
metric double rectangular barriers (Fig. 2c). 

The current is given by 

C 2  e Gz/RT 
I=  - F D  

6 ( x )  = 

G is given by 

x= ]~2d x=(y2 w H)d x=(1 - y 2 -  H)d 

eG/RT dx q - ~ eG/RT dx+ ~ eG/RT dx 
X=0 x=y2d x=(y2+H)d  

_ Cf,/RT 
x=(1 --72)d x =d  

+ 5 eG/RTdx+ 5 eG/RTdx 
x=(1 - -72-H)d x=(1 ',d2) d 

EFx 72d<=x<=(72+H) d 
Go 

d ( 1 - 7 2 - H ) d < x < ( 1 - 7 2 ) d  

0---X<Ted 
EFx 

('y2 + H) d <x  < ( 1 - T z - H ) d  
d 

(1-T2)d<x<=d. 

(12) 

(13) 



Energy Barriers and I(V) Relations 219 

It has been suggested (Hall et al., 1973) that a double-barrier may 
serve as an approximation to the trapezoid barrier. The double rectangular 
barrier will be used to test this approximation. 

Results and Discussion 

Calculated Current Voltage Relations 

All the barriers discussed above produce nonlinear current voltage 
diagrams with various curvatures, depending on the particular choice of 
Go, 7 and H. 

In order to determine which barriers can account for an experimental 
I(V) curve, we have compared the calculated I(V) relations with the 
linearized single Eyring barrier relation (Eq. (5)). 

The computed currents at various voltages for the different barriers 

were used to plot (Eo- E)vs. loglo-  (.1--e -EF/RT ) - I/Io " The plots were usu- 

ally nonlinear. The best fitting straight line through the points of the plot 
gives the best 7 value for the single Eyring barrier that can be correlated 
with the original barrier. 

Thus, for example, if the computed I(V) values of a trapezoid barrier 
5 kcal high and of a plateau thickness 0.6 d (which means 7T = 0.2) are used 

(1--e -~F/Rr ) 
to plot (Eo-E)vs. log~0 I/Io , and a least squares method is 

employed to fit a straight line through the computed points we find that 
this particular straight line describes precisely an Eyring barrier positioned 
such that 7Eyring=0.35, which is nearly twice 7T. 

In Fig. 3 a the best fitting 7 values for the single Eyring barrier are 
plotted against trapezoidal barrier 7r values. In Figs. 3b and c, similar 
7 values are plotted against the values of rectangular (7R) and double (72) 
rectangular barriers. 

The actual "linearization plots" (based on Eq. 5) are given in Figs. 4, 
5, and 6. 

As would be expected, only the single rectangle barrier linearized 
plots (Fig. 6) lie on the best fitting straight lines. Both the trapezoidal 
and the double rectangular linearized plots deviate from the best fitting 
straight lines. As seen in Figs. 4 and 5, both deviations are such that the 
plots are convex in relation to the voltage axis. When 7 reaches the value 
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Eyring-model position parameter YM," (a) Trapezoid barrier; (b) Rectangle barrier; and 

(c) Double Rectangle barrier 

0.30, however, the plots virtually coincide with the best fitting straight 

lines. 
One may therefore conclude that if the actual barrier across the mem- 

brane is a trapezoid with a plateau thickness larger than 40~o of the 
membrane  thickness or consists of two distinct rectangles separated from 
each other by a distance larger than 40 ~o of the membrane thickness, the 
linearized current voltage relation will readily reveal the situation (although 
a distinction between these two different barriers, i.e., trapezoid or double 
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rectangle, may not be possible). The linearized plots will be convex towards 
the voltage axis in both cases and will not coincide with best-fitting straight 
lines. (On an ordinary current-voltage diagram such a situation will be 

expressed by a less "s teep" current voltage relation relative to a single 
rectangle or a single Eyring barrier. In other words, the current increase 
with voltage will be more gradual in the case of a trapezoid or double 
rectangle barrier. The linearized plots express this difference clearly, 
since the single rectangle or the Eyring barriers yield perfect straight 
lines while the trapezoid and double rectangle are curved). 

If, however, the trapezoid plateau is small, or if the two rectangular 
barriers are close to each other (i.e., in both cases 7>0.30) the linearized 
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plots will form nearly straight lines. It will be impossible to know on the 
basis of the current  voltage relations whether  these straight lines cor- 
respond to a specific barrier. For  example, reading off Fig. 3, a linearized 
current  voltage fitting a straight line with a slope corresponding to 7 = 0.42 
is compatible  with any one of the following situations" 

(1) A single Eyring barrier (of any height) with ? = 0.42. 
(2) A single rectangle barrier (of any height > 3  kcal) with 7R=0.34 

(for rectangle thickness H=0.20) ,  with 7R=0.39 (for H=0.10)  or with 
7R=0.42 (for H=0.01) .  

(3) A 5 -  10 kcal high trapezoid barrier with 7r = 0.30. 
(4) A double rectangle barrier (of any height >5kcal)  and H=0 .01  

with 72=0.35. 
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Specific Examples of Current Voltage Relations 

We have used the current voltage relations of Hall et al. (1973) who 
studied the nonactin mediated transport of potassium ions across lipid 
bilayers to calculate the best fitting straight line in the linearization plot. 
The results were taken from the points in Fig. 9 of Hall et al. which 

describes the I(V) curve in the presence of 3 symmetric KC1 solutions. 
Fig. 7 shows the "l inearized" plots. The points deviate from a straight 

line and on this basis a single Eyring or rectangle barrier is excluded, in 
agreement with Hall et al. These authors concluded that their results 
could be fitted with a trapezoid barrier of 7r=0.28. 

In contrast, we find that their experimental current voltage relations 

fit lower trapezoid 7r values. Our fitting process is based on comparing 
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Fig. 7. The results of Hall, Mead and Szabo (1973) (points) replotted, with the least-squares 
best fitting linearized current voltage lines (straight lines). The results refer to nonactin 

mediated K transport across phosphatidyl-ethanolamine bilayers 

current voltage relations generated by the integration of the Nernst- 
Planck equation for trapezoid barriers with the experimental I ( V )  rela- 
tions using the linearization process. We find that the nonactin results 
with [KC1]=0.095 and [KClJ=0.011M fit trapezoids with 7r=0.225, 
0.210 and 0.200 for barrier heights 5, 10 and 20 kcal, respectively. 

The difference between these estimates and that of Hall et al. is not, 
however, significant since it is attributable to different ways in which the 
edge is defined. A sharp edged trapezoid that closely fits Hall et al.'s 
function (their equation 28) requires 7=0.22. But there is a very large 
difference between these values and the Eyring approximation, which 
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from Fig. 3(a) would require 7=0.38. The Eyring equivalent, therefore, 
grossly underestimates the plateau thickness. 

We have studied the temperature dependence of the current-voltage 
relation of 18-crown-6 mediated sodium transport in phosphatidyl-serine 
bilayers. The linearized current-voltage relations of this system are given 
in Fig. 8. At six different temperatures the  7 values are 0.61 (19 ~ 0.56 
(26 ~ 0.535 (30 ~ 0.52 (38 ~ 0.49 (41 ~ 0.5I (44 ~ It appears, 
therefore, that in this case a steep energy barrier located in the middle of 
the membrane (7 =0.5) is responsible for the current voltage relations at 
all temperatures. 

The origin of trapezoid (or approximately trapezoid) barriers: in mem- 
branes is the "image barrier" which is the potential energy of a charged 
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species in a thin, low, dielectric medium (membrane) separating two semi- 
infinite high dielectric media (the aqueous solutions). Haydon and Hladky 
(1972) calculated the shape of this barrier and the current-voltage relation 
expected from the energy profile across the membrane. They found that 
the calculated conductance-voltage relation (Table B-1 in their paper) fits 
their experimental data for sodium-nonactin bilayer conductances. 

We have used their current voltage calculations (Eq. B-17 and Table B-l) 
in the linearization plot. We find (see Fig. 9) that the image barrier linear- 
ized current-voltage values fall very nearly on a best fitting straight line 
with a slope corresponding to 7 =0.44. 

Thus, the ambiguity of current-voltage interpretation is demonstrated 
once more. On the basis of current-voltage relations the calculated values 
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(or indeed the experimental Na-nonactin data) are compatible with two 
very different energy profiles: an image charge barrier and a single Eyring 
barrier situated at a distance 0.44 from the membrane surface. While this 
ambiguity holds for the experimental sodium-nonactin results, it does not, 
of course, hold for the theoretical image barrier values which were 
specifically calculated on the basis of a given energy profile across the 
membrane. 

The image barrier generates current-voltage relations that may be 
compared with those generated by theoretical trapezoid barriers. We 
find that the trapezoids which approximate the image barrier best are 
(Fig. 10): a trapezoid 5 kcal high with a plateau thickness 0.30; a trapezoid 
10kcal high with thickness 0.37 or trapezoids 20-50kcal high with 
plateau thickness 0.40. 
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Conclusions 

The general conclusion of this paper is that the ability of a current- 
voltage diagram to distinguish between various energy profiles is limited. 
The degree of limitation depends on the shape of the relation and esti- 
mates of the position of peak energy barriers may then depend on which 
profile is chosen for analysis. Finally, our results show that it is not valid 
to use Eyring "equivalents" for some profiles since the intuitive notion 
that the equivalent Eyring barriers should be placed at the edges of plateau 
regions is usually incorrect. 

These conclusions apply to energy profiles that do not allow steady 
state conditions to be approached at any point in the membrane. The 
concentration of ions is then always a function of the current flow. By 
contrast, models involving deep energy wells (corresponding to strong 
binding sites) may allow the concentration to approach steady state values 
before the ions surmount the peak energy barrier. This is the kind of 
model used by Hille (1974; 1975) for the sodium channel of excitable 
membranes. The concentration at the binding site is then a much simpler 
function of its location, 7, and of the potential, E. An umambiguous 
assignment of the value of 7 then becomes possible. This lack of ambiguity 
depends, of course, on prior knowledge of the shape of the energy profile. 
Our general conclusion that current-voltage diagrams by themselves may 
be inadequate is still applicable. 

These conclusions reinforce the need to obtain further empirical 
information over and above that provided by current-voltage diagrams 
alone. Anderson and Fuchs (1975) have recently reported the use of 
tetraphenylborate as a tool for investigating the energy profile in the 
membrane. The ion movement in this case differs from all the cases 
considered in this paper inasmuch as the ion movement is entirely con- 
fined to the membrane interior and produces current transients that 
resemble those of the gating currents in excitable membranes. In this 
case, the measurement of current transients, together with an estimate of 
the fraction of the electric field influencing transport, provide sufficient 
additional information to allow discrimination, between, e.g., image force 
and trapezoidal barriers, to be made. 
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